

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	qte 0.6.0 documentation

qte Documentation

qte is a wrapper around the PySide GUI toolkit making it simpler and
more pythonic to use. No changes are made to the original PySide classes,
but new classes and functions are introduced which effectively replace
much of the most commonly used PySide GUI functionality.

Key features

	All objects (i.e. those contained in PySide.QtGui [http://www.pyside.org/docs/pyside/PySide/QtGui/index.html], PySide.QtCore [http://www.pyside.org/docs/pyside/PySide/QtCore/index.html],
and the new objects provided by this package) can be imported from a
single namespace, e.g:

>>> from qte import QRect, QWidget, DataModel

Or, more commonly:

>>> import qte
>>> rect = qte.QRect()

The PySide objects, i.e. those prefixed with “Q”, are exactly the same as
those imported directly from PySide, all changes are in the new classes.

	A number of convenience function had been added. See Functions for
details.

	The PySide model/view framework has been extended and simplified.
See Model/View framework for more information.

	A new singleton Application class is available, extending the
functionality of PySide.QtGui.QApplication. See Application and runApp for
more information.

	A Document class is provided to manage typical document application
functions, such as opening, saving, etc.

	PySide has a range of simple, one-line editing widgets with slightly
different APIs. In order to make it possible to program
type-independantly, several of these have been subclassed to conform
with EditWidgetABC.

Installation

qte can be installed from the cheeseshop, or downloaded directly from
http://bitbucket.org/aquavitae/qte. It requires PySide >= 1.1.

Table of contents

	Tutorial

	Classes

	Functions

	UIs and Resources

	Model/View framework

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

Tutorial

Introduction

Qt is a highly complex and versatile toolkit, but this flexibility sometimes
makes it difficult to formulate workflows. This short tutorial illustrates
a suitable workflow for developing desktop applications with PySide and qte.

Hello World

All tutorials start with a “Hello World” example:

import qte
label = qte.QLabel('Hello World!')
qte.runApp(label, 'MyApp')

And here is an explanation of each line.

	qte is imported. All of PySide’s QtCore and QtGui classes,
can be accessed directly from this namespace, as well as the extra
objects provided by qte.

	A new QLabel is created from the qte namespace.

	The application is launched with the label as the main window and
the application name as ‘MyApp’.

The most important part of this example is the qte.runApp function. This
is essentially equivalent to:

qte.Application().setApplicationName('MyApp')
qte.Application().setMainWindow(label)
win.setWindowTitle('MyApp')
win.show()
qte.Application().exec_()
sys.exit()

Note that qte.Application is used instead of QApplication. The
qte.Application class provides a few extra features which make it more
suitable to desktop applications, such as settings management. It is also
a singleton which on its first initialisation calls
QApplication([sys.argv]).

UIs and Resources

Qt allows for two ways of designing user interfaces; they can either be hard
coded or created using Qt Designer. In practice, it is common for a
combination of these methods to be used. When coding Qt in C++, the normal
workflow consists of designing the UI and creating resources in Qt Designer,
then compiling them into binary files which can be inserted into the
executable. In python, code is seldom compiled to an executable at all,
so compiling ui and qrc files becomes a rather annoying and tedious
exercise. qte provides an alternative may of dealing with these.

Resources can be compiled at runtime using qte.loadResource. The binary
data created by this is identical to the output of rcc, but the function
is implemented purely in python, with no dependency on rcc or pyside-rcc
at all. If used with the register argument, it also registers the data
with the resource system so that resources can be used immediately.

PySide’s QUiLoader class can be used to create widgets at runtime from
ui files. qte extends this with qte.loadUi and qte.uiWrapper.
qte.loadUi does the same job as QUiLoader.load, but first registers
custom widgets and resources. qte.uiWrapper wraps the widget in another
class and is especially useful for QMainWindows which cannot be
promoted in Qt Designer.

The following example shows how to load and inherit from a QMainWindow
interface created in Qt Designer. The window has a single button called
showDialog which, when clicked, loads and displays a dialog from another
ui file with itself as the parent. The button icon is read from a resource
file:

import qte

class MainWindow(qte.UiWrapper('ui/mainwindow.ui'):

 def __init__(self):
 qte.loadResource('icons.qrc', register=True)
 self.showDialog.setIcon(':dialog.png')
 self.showDialog.clicked.connect(self.loadDialog)

 def loadDialog(self):
 dialog = qte.QUiLoader().load('ui/dialog.ui', self)
 dialog.show()

Model/View Programming

One of the main problems with Qt’s model/view framework in a python
environment is the assumption that data is stored, or only visible through
a QAbstractItemModel. In C++ this is an ideal structure for storing
structured data, but in python lists and dicts provide more flexibility.
qte.DataModel gives this flexibility by wrapping a QAbstractItemModel
interface around generic python structures. Currently it only supports
tabular data (i.e. which can be displayed in a QTableView), but in the
future tree-like structures will be supported too.

An qte.DataView class is inherited from QTableView and has a few extra
features and customised defaults.

There are also several new delegates, all based on qte.TypedDelegate which
supports more data types than the default QItemDelegate.

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

Classes

	AppendProxyModel

	Application

	CheckBox

	CheckFilterModel

	ComboBox

	DataModel

	DataView

	DateEdit

	DateTimeDelegate

	DateTimeEdit

	Document

	EditWidgetABC

	FloatDelegate

	FloatEdit

	HideProxyMixin

	IntEdit

	ListDelegate

	OptionsBox

	SafeWriter

	SelectList

	SortFilterProxyModel

	TextEdit

	TypedDelegate

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

AppendProxyModel

	
class qte.AppendProxyModel(parent=None)

	This proxy model provides an interface to append rows.

For the most part, data is mapped straight the source model. However,
this model always provides an additional empty row at the end which
can be used to enter new data. Every time the data is changed in
this row, the appendDataChanged signal is emitted. The source model
is expected to emit PySide.QtGui.QAbstractProxyModel.rowsInserted if the
append data was accepted, so if the source model emits this signal to
indicate appending a single row, the pending data is cleared.

Members

Inherits

	PySide.QtGui.QAbstractProxyModel

	HideProxyMixin

Properties

	
AppendProxyModel.defaults

	A dict containing default value to use when editing pending data.

Each value in this dict should be keyed by the column number. If
no default is set, None [http://docs.python.org/3.2/library/constants.html#None] is used.

New Methods

	
AppendProxyModel.clear(column=None)

	Clear pending data by column. If column is omitted, then clear
everything.

	
AppendProxyModel.setView(view)

	Called when the model is set to a DataView.

	
AppendProxyModel.unsetView(view)

	Called when the model is removed from a DataView.

Re-implemented Methods

	
AppendProxyModel.columnCount(parent=None)

	
See also

PySide.QtGui.QAbstractProxyModel.columnCount

	
AppendProxyModel.data(index, role)

	Return data at index for role.

If index refers any row except the pending row, the source model
data is returned. For the pending row, the return value is as follows:

	Role
	

	BackgroundRole
	A brush using PySide.QtGui.QPalette.Midlight

	EditRole
	Pending, default or None [http://docs.python.org/3.2/library/constants.html#None], depending what has been
set.

	DisplayRole
	Pending or an empty string, depending what has been
set.

See also

PySide.QtGui.QAbstractProxyModel.data

	
AppendProxyModel.flags(index)

	Return the source model’s flags for all but the last row. The
last row returns Qt.ItemIsEnabled and
Qt.ItemIsEditable.

See also

PySide.QtGui.QAbstractProxyModel.flags

	
AppendProxyModel.headerData(section, orientation, role)

	Return header data from the source model.

In addition, the vertical header at the append row has a “clear” icon.
The PySide.QtGui.QHeaderView.sectionClicked signal for this header should
be connected to clear for it to work. This is done automatically
if used with DataView.

See also

PySide.QtGui.QAbstractProxyModel.headerData

	
AppendProxyModel.mapColumnFromSource(column)

	Map column from the source model to the proxy model.

See also

HideProxyMixin.mapColumnFromSource

	
AppendProxyModel.mapColumnToSource(column)

	Map column to the source model.

See also

HideProxyMixin.mapColumnToSource

	
AppendProxyModel.mapFromSource(index)

	Map index from the source model to the proxy model.

See also

PySide.QtGui.QAbstractProxyModel.mapFromSource

	
AppendProxyModel.mapRowFromSource(row)

	Map row from the source model to the proxy model.

See also

HideProxyMixin.mapRowFromSource

	
AppendProxyModel.mapRowToSource(row)

	Map row to the source model.

See also

HideProxyMixin.mapRowToSource

	
AppendProxyModel.mapToSource(index)

	Map index to the source model.

See also

PySide.QtGui.QAbstractProxyModel.mapToSource

Signals

	
AppendProxyModel.appendDataChanged(dict)

	

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

Application

	
class qte.Application

	A singleton subclass of PySide.QtGui.QApplication.

Basic usage of this class is the same as for PySide.QtGui.QApplication, but
it also supports a few extra features:

	No arguments are specified in the constructor and sys.argv [http://docs.python.org/3.2/library/sys.html#sys.argv] is used
to construct the PySide.QtGui.QApplication object. If additional
command line arguments need to be specified at runtime, then sys.argv [http://docs.python.org/3.2/library/sys.html#sys.argv]
should be modified before importing qte for the first time.

	It is a singleton, meaning that it only ever has one instance,
and Application() always returns the same object.

	It recognises the main window for an application. This allows
global functions, such as message, to use the main window as the
parent widget.

>>> app = Application()
>>> win = QWidget()
>>> app.setMainWindow(win)
>>> app.mainWindow() is win
True

	It is automatically created when qte is imported, to ensure that
there is always a running application

	The application provides support for saving and restoring settings
through PySide.QtGui.QSettings. PySide.QtGui.QSettings requires that the
organisation and application names are set, so for convenience, the
organisation is set to ‘qte’ by default. The first time
Application.settings is called, a new instance of PySide.QtGui.!QSettings
is created. A new instance is also created whenever it is called
with arguments.

Members

Inherits

	PySide.QtGui.QApplication

New Methods

	
Application.addStateObject(obj, name=None)

	Register an object as having a saveable state. If the object has
already been added, then the name is updated.

	
Application.addStateObjects(objects)

	Register a dict of object as having a saveable state.

	
Application.mainWindow()

	Return the main window, or None [http://docs.python.org/3.2/library/constants.html#None] if it has not been set.

	
Application.restoreGeometry(window, name=None)

	Restore the window’s geometry and state. name is the section
name which the settings are saved under. If it is omitted, the
window’s PySide.QtCore.~QObject.objectName is used. If no settings have
yet been saved, this does nothing and returns False [http://docs.python.org/3.2/library/constants.html#False].

	
Application.restoreState(obj, name=None)

	Restore the objects’s state by calling PySide.QtCore.~QObject.restoreState.
name is the section name which the settings are saved under. If it is
omitted, the object’s PySide.QtCore.~QObject.objectName is used. If no
settings have yet been saved, this does nothing and returns False.

	
Application.restoreStates()

	Restore the state of all objects registered by addStateObject.

	
Application.saveGeometry(window, name=None)

	Save the window’s geometry. name is the section name to save the
settings under. If it is omitted, the window’s
PySide.QtCore.~QObject.objectName is used.

	
Application.saveState(obj, name=None)

	Save the object’s state by calling PySide.QtCore.~QObject.saveState.
name is the section name to save the settings under. If it is
omitted, the objects’s PySide.QtCore.~QObject.objectName is used.

	
Application.saveStates()

	Save the state of all objects registered by addStateObject.

	
Application.setMainWindow(window)

	Set the main window. window should be an instance of either
PySide.QtGui.QWidget or a uiWrapper subclass. In the latter case, the
actual widget wrapped is set.

	
Application.settings(organisation=None, application=None)

	Return a PySide.QtCore.QSettings instance for this applications settings.

On the first call to this function, and every other call with
arguments, a new PySide.QtCore.QSettings instance is created. If either
argument is None [http://docs.python.org/3.2/library/constants.html#None] then the application properties
PySide.QtGui.~QApplication.organisationName and
PySide.QtGui.~QApplication.applicationName are used. If organisation
and application are omitted or None [http://docs.python.org/3.2/library/constants.html#None] and the method has already
been called, the previously created PySide.QtCore.QSettings
instance is returned.

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

CheckBox

	
class qte.CheckBox(value=False, parent=None)

	A standard check box for bool [http://docs.python.org/3.2/library/functions.html#bool] types.

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue and
getValue and indicates that the check box is
partially checked.

Inherits

	PySide.QtGui.QCheckBox

	EditWidgetABC

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

CheckFilterModel

	
class qte.CheckFilterModel(titles=None)

	A list model presenting filter options.

This subclasses from DataModel, and has a single column containing
"Select All" and the values in source. "Select All"
is tristate, indicating (and setting) the check state of all other
values.

If titles is omitted, a single column is assumed.

This would commonly be used as the model of a combo or list widget to
allow the user to filter out values from a data source. By default, all
items are selected and any new ones added are automatically selected.

When the filter changes, a filterChanged signal is emitted with a
set of unselected values.

Members

Inherits

	DataModel

New Methods

	
CheckFilterModel.selectedState()

	Return the check state of the "Select All" option

Re-implemented Methods

	
CheckFilterModel.data(index, role=<class 'DisplayRole'>)

	
See also

DataModel.data

	
CheckFilterModel.rowCount(parent=None)

	Add one row (i.e. “Select All”) to the row count.

See also

DataModel.rowCount

	
CheckFilterModel.setData(index, value, role=<class 'EditRole'>)

	
See also

DataModel.setData

Signals

	
CheckFilterModel.filterChanged(set)

	

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

ComboBox

	
class qte.ComboBox(value='', parent=None)

	An editable combo box for str [http://docs.python.org/3.2/library/functions.html#str] types.

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue
and is converted to an empty string. None [http://docs.python.org/3.2/library/constants.html#None] is returned by
getValue if no index is selected.

Inherits

	PySide.QtGui.QComboBox

	EditWidgetABC

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

DataModel

	
class qte.DataModel(titles=None)

	The DataModel works on the premise that the data itself is stored and
managed in some sort of python structure, for example a list [http://docs.python.org/3.2/library/functions.html#list]. The data
is assume to be essentially tabular with defined columns. The most
important method is source, which returns an iterator over source
records and is internally cached by the model to improve performance.
source can be re-implemented through inheritance, or by simply
assigning the name to a function, e.g.:

mymodel.source = lambda: iter(mydata)

The default implemented returns the same list every time, so it may be
used to assign static data, e.g.:

mymodel.source().append(['new row'])

Each row in the table is represented by an item returned by source.
The only requirement of the source items are that they should also be
iterable.

Columns are defined by setting a list of column titles in the constructor
or to DataModel.titles.

Members

Inherits

	PySide.QtGui.QAbstractTableModel

Properties

	
DataModel.titles

	An ordered list of column titles.

New Methods

	
DataModel.cache_refresh()

	Force a cache refresh now.

	
DataModel.record(row)

	Return the record currently appearing on a row.

	Parameters:	row – Integer row number.

	Returns:	A record

	
DataModel.setFlags(column, flags)

	A convenience method to set flags for column.

Flags may be set either as an bitwise-or combination of
PySide.QtCore.Qt.ItemFlags or as a space-separated list of any of the
following strings.

	String
	Qt.ItemFlag
	Description

	selectable
	ItemIsSelectable
	It can be selected.

	editable
	ItemIsEditable
	It can be edited.

	drag
	ItemIsDragEnabled
	It can be dragged.

	drop
	ItemIsDropEnabled
	It can be used as a drop target.

	checkable
	ItemIsUserCheckable
	It can be checked or unchecked by
the user.

	enabled
	ItemIsEnabled
	The user can interact with the item.

	tristate
	ItemIsTristate
	The item is checkable with three
separate states.

	
DataModel.setValue(record, column, value)

	Set the value in record for a specific column to value.
By default, this assigns value using record[column] = value.
This should never be called directly, or the
PySide.QtGui.~QAbstractTableModel.dataChanged signal will not be emitted.

	Parameters:	
	record – A record in source.

	column – The column number.

	value – The value to store in the record.

	Returns:	True [http://docs.python.org/3.2/library/constants.html#True] if the value was stored successfully.

	
DataModel.source()

	Return an iterator over source data that this model represents. The
default implementation returns the same list on every call.

	
DataModel.value(record, column)

	Return the value stored in record for a specific column.
By default, this uses index lookup on the column number, i.e
record[column].

	Parameters:	
	record – A record in source.

	column – The column number.

	Returns:	The value stored in the record.

Re-implemented Methods

	
DataModel.columnCount(parent=None)

	Return the number of columns as determined from titles.

parent is superfluous and is ignored. It is only provided for
Qt compatibility.

See also

PySide.QtGui.QAbstractTableModel.columnCount

	
DataModel.data(index, role=<class 'DisplayRole'>)

	Return the data in source for Qt.DisplayRole
and Qt.EditRole.

See also

PySide.QtGui.QAbstractTableModel.data

	
DataModel.flags(index)

	Return PySide.QtCore.Qt.ItemFlags for a cell.

By default, all cells are selectable, editable and enabled.

See also

setFlags

See also

PySide.QtGui.QAbstractTableModel.flags

	
DataModel.headerData(section, orientation, role)

	Return header information.

For horizontal headers and Qt.DisplayRole,
return the relevant item in titles.

See also

PySide.QtGui.QAbstractTableModel.headerData

	
DataModel.rowCount(parent=None)

	Return the number of visible rows under parent.

parent is superfluous and is ignored. It is only provided for
Qt compatibility.

See also

PySide.QtGui.QAbstractTableModel.rowCount

	
DataModel.setData(index, value, role)

	This has been re-implemented to call setValue for
Qt.EditRole.

See also

PySide.QtGui.QAbstractTableModel.setData

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

DataView

	
class qte.DataView(parent=None)

	A customised subclass of PySide.QtGui.QTableView.

The following defaults are set:

	The default delegate is TypedDelegate

	The default row height is reduced to 1.5 times the text height.

	The selection model is set to
ContiguousSelection

The following new features have been added:

	A new currentRowChanged signal is emitted from the view when the
current row changes. In Qt, this has to be accessed through the
selection model.

	A column widget may be set to the widget of a piece of text. See
setColumnWidth for more information.

	setModel allows communication back to the model through the model’s
setView and unSetView methods. See setModel for more
information.

	Application.saveState and Application.restoreState are supported
through the saveState and restoreState methods. Currently, only
the column widths are saved.

	Once a cell has been edited, the current cell moves down a row,
mimicking the behaviour of most spreadsheet programs.

	The view has copy and paste support.

Members

Inherits

	PySide.QtGui.QTableView

Properties

	
DataView.copyRole

	The PySide.QtCore.Qt.ItemRole to use when copying data form the table
The default is DisplayRole

	
DataView.defaults

	A dict containing default value to use when editing pending data.

Each value in this dict should be keyed by the column number. If
no default is set, None [http://docs.python.org/3.2/library/constants.html#None] is used.

	
DataView.pasteRole

	The PySide.QtCore.Qt.ItemRole to use when pasting data into the table.
The default is EditRole

New Methods

	
DataView.copy()

	Copy the selection to the system clipboard.

Data is copied as text in a tab-separated format similar to that
used by most spreadsheet programs.

	
DataView.nextCell()

	Move to the next cell down if possible. If the current cell is in
the last row, nothing happens.

	
DataView.paste(text=None)

	Paste tabular data into the table, overwriting existing.

The data is written to each cell using model().setData with the
role specified in pasteRole. Note that no data conversion
is done and all the data is pasted as strings.

The exact operation of this depends on the selection: If a range
of cells is selected, then pasteToSelection is used. If nothing
is selected, pasteAll is used.

If text is not specified, the contents of the clipboard are used.

	
DataView.pasteAll(data)

	Paste data to the current index, filling down and right.

data is an iterable of rows, each row being an iterable of columns.
As much of the data is pasted as possible, filling down and right
from the current index. Pasting stops either when rows and columns
run out or when the data runs out. The data is pasted one row at
a time and a check is made after each row to determine if there is
space for more.

	
DataView.pasteToSelection(data)

	Paste data to overwrite the selected indexes.

data is an iterable of rows, each row being an iterable of columns.
The data is pasted to fill the selected range, repeating as necessary.
The selection is assumed to be contiguous between the smallest
and largest selected indexes.

	
DataView.restoreState(state)

	Restore the object state to state.

	
DataView.saveState()

	Return the state of the object to save using Application.saveState.

	
DataView.setColumnWidth(column, width)

	Sets the width of the given column to the width specified.

width may be a string, in which case textWidth is used to
calculate the width of the text on this widget.

	
DataView.setModels(*models)

	Connect a list of proxy models to this view.

This is a convenience function for common cases when a DataModel
with a series of proxy models are used. The models listed should
be in hierarchal order, e.g.:

setModels(proxy1, proxy2, datamodel)

is equivalent to:

setModel(proxy1)
proxy1.setSourceModel(proxy2)
proxy2.setSourceModel(datamodel)

The last model should be an actual data model, not a proxy.

	
DataView.saveState()

	Return the state of the object to save using Application.saveState.

	
DataView.saveState()

	Return the state of the object to save using Application.saveState.

Re-implemented Methods

	
DataView.setColumnWidth(column, width)

	Sets the width of the given column to the width specified.

width may be a string, in which case textWidth is used to
calculate the width of the text on this widget.

See also

PySide.QtGui.QTableView.setColumnWidth

	
DataView.setItemDelegate(delegate)

	
See also

PySide.QtGui.QTableView.setItemDelegate

	
DataView.setItemDelegateForColumn(column, delegate)

	
See also

PySide.QtGui.QTableView.setItemDelegateForColumn

	
DataView.setItemDelegateForRow(row, delegate)

	
See also

PySide.QtGui.QTableView.setItemDelegateForRow

	
DataView.setModel(model)

	Set the model displayed in the view.

When a model is set, its setView method is called if it exists.
Similarly, unsetView is called when the model is removed from
the view. These methods allow the model to perform specific
action on the view, e.g. connecting to some of its signals.

See also

PySide.QtGui.QTableView.setModel

Signals

	
DataView.currentRowChanged(dict)

	

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

DateEdit

	
class qte.DateEdit(value=None, parent=None)

	A standard date edit widget for date [http://docs.python.org/3.2/library/datetime.html#datetime.date] types

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue and is
converted to the default date used by PySide.QtGui.QDateEdit. None [http://docs.python.org/3.2/library/constants.html#None] is
never returned by getValue.

Inherits

	PySide.QtGui.QDateEdit

	EditWidgetABC

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

DateTimeDelegate

	
class qte.DateTimeDelegate(parent, fmt=None, usetime=False)

	A delegate for datetime [http://docs.python.org/3.2/library/datetime.html#datetime.datetime] values.

	Parameters:	
	fmt – A format string for display as used by
strftime [http://docs.python.org/3.2/library/datetime.html#datetime.datetime.strftime]. If it is omitted then
the system default is used.

	usetime – A boolean specifying whether the time is managed by the
delegate. If True [http://docs.python.org/3.2/library/constants.html#True], then the delegate uses
datetime [http://docs.python.org/3.2/library/datetime.html#datetime.datetime]. If false, it uses date [http://docs.python.org/3.2/library/datetime.html#datetime.date].

Members

Inherits

	TypedDelegate

Re-implemented Methods

	
DateTimeDelegate.getWidget(parent, option, index)

	Return a DateEdit, or DateTimeEdit if usetime is True [http://docs.python.org/3.2/library/constants.html#True].

See also

TypedDelegate.getWidget

	
DateTimeDelegate.displayText(value, locale)

	
See also

PySide.QtGui.QStyledItemDelegate.displayText

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

DateTimeEdit

	
class qte.DateTimeEdit(value=None, parent=None)

	A standard date and time edit widget for datetime [http://docs.python.org/3.2/library/datetime.html#datetime.datetime] types

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue
and is converted to the default value used by PySide.QtGui.QDateTimeEdit.
None [http://docs.python.org/3.2/library/constants.html#None] is never returned by getValue.

Inherits

	PySide.QtGui.QDateTimeEdit

	EditWidgetABC

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

Document

	
class qte.Document

	A class representing the state of a single document.

This framework provides methods for working with documents and files,
specifically dealing with operations such as opening and saving them.
The Document class should be inherited to create a new type of
document, and newDocument, openDocument, saveDocument and
closeDocument re-implemented. The value of hasChanged should be
managed by the subclass.

Acceptable file filters are stored in the saveFilters and openFilters
attributes, and are each a list of filters, e.g.,
["Images (*.png *.xpm *.jpg)", "Text files (*.txt)"]

The new, open, save, saveAs and close methods of this class may
be used as slots and connected to relevant actions.

Members

Inherits

	PySide.QtGui.QObject

Properties

	
Document.currentPath

	Return or set the path at which open and save dialogs open.

This defaults to the user home directory.

	
Document.ext

	Return the extension of the currently opened file.

See also

name

	
Document.fullName

	Return the full path to the currently opened file.

See also

name

	
Document.hasChanged

	True [http://docs.python.org/3.2/library/constants.html#True] if the document has changed since the last save.

By default, this is always True [http://docs.python.org/3.2/library/constants.html#True]. It is up to the implementation
to change it as necessary.

	
Document.name

	Return the name of the currently opened file.

This returns the name portion of the full path. If no named
file is opened, an empty string is returned. Note that
an empty return value does not mean that the document is empty; a
new one may be open which has not yet been saved.

	
Document.openFilters

	A list of filters to apply to the open dialog.

	
Document.path

	Return the folder path to the currently opened file.

See also

name

	
Document.saveFilters

	A list of filters to apply to the save dialog.

New Methods

	
Document.close()

	Close an open document.

This method should be used as a slot to request that the current
document be closed. If there is no open document, it does
nothing and returns False [http://docs.python.org/3.2/library/constants.html#False], otherwise it prompts for the user to
save, and calls closeDocument.

True [http://docs.python.org/3.2/library/constants.html#True] is returned on success.

	
Document.closeDocument()

	Close an open document and return True [http://docs.python.org/3.2/library/constants.html#True] for success.

This method should be re-implemented by subclasses and should
perform the necessary operations to clear document data. Operations
such as saving the document are handled prior to calling this
function, so it can be assumed that it is safe to clear the data.

The default implementation does nothing and returns True [http://docs.python.org/3.2/library/constants.html#True].

	
Document.isOpen()

	Return true if there is a currently open document.

	
Document.new()

	Create a new document.

This method should be used as a slot to create a new document.
If there is a document already open, it first attempts to close it
using close. newDocument is called to initialise a new document.
True [http://docs.python.org/3.2/library/constants.html#True] is returned on success.

	
Document.newDocument()

	Initialise a new, empty document and return True [http://docs.python.org/3.2/library/constants.html#True] for success.

This method should be re-implemented by subclasses and should
perform the necessary operations to create new document data.
Before this is called, Document ensures that there is no
open document, so document data can be assumed to be in the
default state or as left by closeDocument.

The default implementation does nothing and returns True [http://docs.python.org/3.2/library/constants.html#True].

	
Document.open()

	Open an existing document.

This method should be used as a slot to open an existing document.
It behaves in a similar manner to new, except that it displays an
open dialog with filters set by openFilters and calls
openDocument to open the requested file. True [http://docs.python.org/3.2/library/constants.html#True] is returned
on success.

	
Document.openDocument(path)

	Load a document into memory by name and return True [http://docs.python.org/3.2/library/constants.html#True] for success.

This method should be re-implemented by subclasses and should
perform the necessary operations (i.e. opening the file,
locking it, etc) to load the document data from path. All
GUI operations, such as querying the name are handled
prior to calling this function, but no checks are made as to
whether path exists or is accessible.

The default implementation does nothing and returns True [http://docs.python.org/3.2/library/constants.html#True].

	
Document.save()

	Save an open document.

This method should be used as a slot to save the current document.
If there is no open document, it does nothing and returns False [http://docs.python.org/3.2/library/constants.html#False].
If the current document has a name, it is saved silently, otherwise
saveAs is called. True [http://docs.python.org/3.2/library/constants.html#True] is returned on success.

	
Document.saveAs()

	Save an open document under a new name.

This method should be called as a slot to save the current document
with a new name. If there is no open document, it does nothing and
returns False [http://docs.python.org/3.2/library/constants.html#False]. A save dialog is displayed wit filters set by
new name, and saveDocument is called to write it. True [http://docs.python.org/3.2/library/constants.html#True] is
returned on success.

	
Document.saveDocument(path)

	Save a document to disk and return True [http://docs.python.org/3.2/library/constants.html#True] success.

This method should be re-implemented by subclasses and should
perform the necessary operations to write the document data to
path. All GUI operations, such as querying the name are handled
prior to calling this function, but no checks are made as to
whether path exists or is accessible.

The default implementation does nothing and returns True [http://docs.python.org/3.2/library/constants.html#True].

Signals

	
Document.documentOpened()

	

	
Document.documentClosed()

	

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

EditWidgetABC

	
class qte.EditWidgetABC

	Define the API of a standard editing widget.

EditWidgetABC subclasses support a specific set of types, defined by
thier types class method. They may also handle and return None [http://docs.python.org/3.2/library/constants.html#None],
which usually indicates an invalid value. It is up to the subclass
implementation to deal with type checking and conversions.

Members

Inherits

The metaclass inherits from the following. EditWidgetABC itself only
inherits from object [http://docs.python.org/3.2/library/functions.html#object].

	PySide.QtGui.QObject

	abc.ABCMeta [http://docs.python.org/3.2/library/abc.html#abc.ABCMeta]

Abstract Class Methods

	
EditWidgetABC.types()

	Return a list of types supported by the widget.

Abstract Methods

	
EditWidgetABC.getValue()

	Return the value of the widget. This is similar to
PySide.QtGui.QLineEdit.text.

	
EditWidgetABC.setValue(value)

	Set the value of the widget. This is similar to
PySide.QtGui.QLineEdit.setText.

Methods

	
EditWidgetABC.emitValueChanged()

	Called by subclasses to raise the valueChanged signal.

Abstract Signals

	
EditWidgetABC.valueChanged(object)

	

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

FloatDelegate

	
class qte.FloatDelegate(parent, prefix='', decimals=None, suffix='')

	A delegate for float [http://docs.python.org/3.2/library/functions.html#float] values.

	Parameters:	
	prefix – A text prefix to add to numbers displayed, and strip
from numbers entered.

	decimals – The number of decimal places to use when displaying
the number. If omitted, then all decimals are shown.

	suffix – A text suffix to append to numbers displayed, and
strip from numbers entered.

For example:

>>> widget = QWidget()
>>> dg = FloatDelegate(widget, '$ ', 1, ' million')
>>> dg.displayText(12.345678, None)
'$ 12.3 million'

Members

Inherits

	TypedDelegate

Re-implemented Methods

	
FloatDelegate.getWidget(parent, option, index)

	Return a FloatEdit with decimals set as in the constructor.

See also

TypedDelegate.getWidget

	
FloatDelegate.displayText(value, locale)

	
See also

PySide.QtGui.QStyledItemDelegate.displayText

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

FloatEdit

	
class qte.FloatEdit(value=None, parent=None, decimals=None)

	A standard line edit widget for float [http://docs.python.org/3.2/library/functions.html#float] types

If given, decimals sets the number of decimals to round the value to.

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue
and is converted to an empty string. None [http://docs.python.org/3.2/library/constants.html#None] is returned by
getValue if the value cannot be converted to a float.

Inherits

	PySide.QtGui.QLineEdit

	EditWidgetABC

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

HideProxyMixin

	
class qte.HideProxyMixin

	This mixin class provides access to source model attributes and methods.

The following example illustrates usage on a custom model:

class SortModel(QSortFilterProxyModel, HideProxyMixin):
 pass

mdata = QStandardItemModel()
msort = SortModel()
msort.setSourceModel(mdata)

This makes the following two calls identical:

item = msort.itemFromIndex(proxyindex)
item = msort.sourceModel().itemFromIndex(msort.mapToSource(proxyindex))

Arguments and return values may be converted if required, e.g. mapping
of model indexes. The conversions used are based on annotations in the
source model, which should be one of 'row', 'column' or
'index'. The conversions are done by methods in the proxy model,
mapRowFromSource, mapColumnFromSource,
PySide.QtGui.~QAbstractProxyModel.mapFromSource and the corresponding
ToSource methods. PySide.QtGui.QAbstractProxyModel.mapToSource and
PySide.QtGui.QAbstractProxyModel.mapFromSource are defined by PySide.
The others are proxided by the mixin, but may be re-implemented.

Note

Annotations are not supported in Python 2, but can be set explicitly
using, for example rowCount.__annotations__ = {'parent': 'index'}.

SortFilterProxyModel and AppendProxyModel use this mixin.

Members

New Methods

	
HideProxyMixin.mapColumnFromSource(column)

	Map a column from the source model.

This simply calls PySide.QtGui.QAbstractProxyModel.mapFromSource with an
index in row 0, and should be re-implemented when a more direct
method can be used.

	
HideProxyMixin.mapColumnToSource(column)

	Map a column to the source model.

This simply calls PySide.QtGui.QAbstractProxyModel.mapToSource with an
index in row 0, and should be re-implemented when a more direct
method can be used.

	
HideProxyMixin.mapRowFromSource(row)

	Map a row from the source model.

This simply calls PySide.QtGui.QAbstractProxyModel.mapFromSource with an
index in column 0, and should be re-implemented when a more direct
method can be used.

	
HideProxyMixin.mapRowToSource(row)

	Map a row to the source model.

This simply calls PySide.QtGui.QAbstractProxyModel.mapToSource with an
index in column 0, and should be re-implemented when a more direct
method can be used.

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

IntEdit

	
class qte.IntEdit(value=None, parent=None)

	A standard line edit widget for int [http://docs.python.org/3.2/library/functions.html#int] types

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue
and is converted to an empty string. None [http://docs.python.org/3.2/library/constants.html#None] is returned by
getValue if the value cannot be converted to an integer.

Inherits

	PySide.QtGui.QLineEdit

	EditWidgetABC

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

ListDelegate

	
class qte.ListDelegate(parent)

	A delegate for option lists.

When using this delegate, the model’s data method is expected to
return a SelectList object for EditRole and a
string for DisplayRole.

Members

Inherits

	TypedDelegate

Re-implemented Methods

	
ListDelegate.getWidget(parent, option, index)

	Return an OptionsBox.

See also

TypedDelegate.getWidget

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

OptionsBox

	
class qte.OptionsBox(value=None, parent=None)

	A combo box which allows a single selection from a SelectList.

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue
and is converted to an empty SelectList. None [http://docs.python.org/3.2/library/constants.html#None] is never returned
by getValue. The SelectList passed to
setValue is copied and the selected option tracked by
index. This means that non-string types in setValue
will be returned by getValue intact.

Inherits

	ComboBox

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

SafeWriter

	
class qte.SafeWriter(name, text=False, backup=None, open=True)

	A context manager which provides a safe environment for writing a file.

SafeWriter attempts to avoid race conditions and ensure that data
is not lost if for any reason writing fails. It works by using the
following procedure for writing to a file:

	A new empty file is created for writing using tempfile.mkstemp [http://docs.python.org/3.2/library/tempfile.html#tempfile.mkstemp].

	Once the temporary file is closed, the the original is copied to
a new, temporary name (or, optionally, a specified backup).

	The new file written is renamed to the original file name.

	If a backup name is not set, the temporary backup is deleted.

This means that there is always a copy of the original file until after
the new file is closed and if there is any failure during the process
the files are rolled back to their original status.

For example:

with SafeWriter('file') as f:
 f.write(b'spam')

This is all done to avoid race conditionals as far as possible, given
the provisions of tempfile.mkstemp [http://docs.python.org/3.2/library/tempfile.html#tempfile.mkstemp] and os.rename [http://docs.python.org/3.2/library/os.html#os.rename]. Under normal
circumstances, the only possibility of a race condition is that
a new file with the same name as the target could be created after
the target is removed and before the temporary file is renamed.
This will only be possible on certain platforms where os.rename [http://docs.python.org/3.2/library/os.html#os.rename] does
not automatically overwrite.

There are occasions when access to the temporary file name is preferred
to an open file, for example, when using with sqlite. In this case,
open can be set to False to obtain the file name:

with SafeWriter('file', open=False) as name:
 conn = sqlite3.connect(name)
 conn.execute('CREATE TABLE temp (col)')
 conn.close()

Members

Methods

	
SafeWriter.abort()

	

	
SafeWriter.close()

	

	
SafeWriter.name(*args, **kwds)

	

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

SelectList

	
class qte.SelectList(iterable=None)

	A SelectList is simple a list in which some items are marked as selected.

The following examples show usage:

>>> l = SelectList([1, 2, 3, 4, 5])
>>> l.select(3)
SelectList([1, 2, <3>, 4, 5])
>>> l.selection
(3,)
>>> l.select(6)
Traceback (most recent call last):
 ...
ValueError: 6
>>> l
SelectList([1, 2, <3>, 4, 5])
>>> l.clear()
>>> l.selection
()
>>> l.indexselect(0, 2)
SelectList([<1>, 2, <3>, 4, 5])
>>> l.indexselection
(0, 2)
>>> l.select(5, 3)
SelectList([<1>, 2, <3>, 4, <5>])
>>> l.selection
(1, 3, 5)

The following rules govern the processing of the selections:

	If options contains duplicates, the first matching value is selected
when using select

>>> l = SelectList([1, 2, 1])
>>> l.select(1)
SelectList([<1>, 2, 1])

However, it is possible to explicitly select a value using
indexselect().

>>> l = SelectList([1, 2, 1])
>>> l.indexselect(2)
SelectList([1, 2, <1>])

	The selection lists are unordered.

>>> l = SelectList([1, 2, 3, 4, 5])
>>> _ = l.select(3)
>>> _ = l.select(1)
>>> l.selection
(1, 3)

	If a selected value is changed in the SelectList, it is removed
from the selection.

>>> l = SelectList([1, 2, 3])
>>> l.select(2)
SelectList([1, <2>, 3])
>>> l[1] = 4
>>> l
SelectList([1, 4, 3])

Members

Properties

	
SelectList.indexselection

	Read only. Return a tuple of selected indexes.

	
SelectList.selection

	Read only. Return a tuple of the selected values.

Methods

	
SelectList.clear()

	Clear the selection.

	
SelectList.indexselect(*indexes)

	Select indexes and return the SelectList.

>>> l = SelectList('abcdefg')
>>> l.indexselect(0, 3, 6)
SelectList([<'a'>, 'b', 'c', <'d'>, 'e', 'f', <'g'>])

	
SelectList.indexunselect(*indexes)

	Remove indexes and return the SelectList.

If the selection does not contains indexes, then an IndexError [http://docs.python.org/3.2/library/exceptions.html#IndexError]
is raised.

>>> l = SelectList('penguin')
>>> l.select('p', 'g')
SelectList([<'p'>, 'e', 'n', <'g'>, 'u', 'i', 'n'])
>>> l.indexunselect(3)
SelectList([<'p'>, 'e', 'n', 'g', 'u', 'i', 'n'])
>>> l.indexunselect(4)
Traceback (most recent call last):
 ...
IndexError: Item at position '4' is not selected

	
SelectList.select(*values)

	Select values and return the SelectList.

>>> l = SelectList('abcdefg')
>>> l.select('a', 'd', 'f')
SelectList([<'a'>, 'b', 'c', <'d'>, 'e', <'f'>, 'g'])

	
SelectList.unselect(*values)

	Remove values from the selection list and return the SelectList.

If the selection contains duplicate values, then the first found is
removed. If no matching values are found, then a ValueError [http://docs.python.org/3.2/library/exceptions.html#ValueError]
is raised.

>>> l = SelectList('penguin')
>>> l.indexselect(2, 6)
SelectList(['p', 'e', <'n'>, 'g', 'u', 'i', <'n'>])
>>> l.unselect('n')
SelectList(['p', 'e', 'n', 'g', 'u', 'i', <'n'>])
>>> l.unselect('p')
Traceback (most recent call last):
 ...
ValueError: 'p' is not selected

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

SortFilterProxyModel

	
class qte.SortFilterProxyModel(model=None)

	Applies per column filtering to PySide.QtGui.QSortFilterProxyModel.

This behaves almost exactly the same as PySide.QtGui.QSortFilterProxyModel,
but allows separate filters for each column. Also, the filters are
callables which take a value and return True [http://docs.python.org/3.2/library/constants.html#True] (show) or False [http://docs.python.org/3.2/library/constants.html#False] (hide).

This class inherits from HideProxyMixin, and provides all the expected
mapping functions.

Members

Inherits

	PySide.QtGui.QSortFilterProxyModel

	HideProxyMixin

New Methods

	
SortFilterProxyModel.filterFunction(column)

	Return the filter function and role as set by setFilterFunction.

The return value is a tuple of (function, role). If no filter
has been set, both values are None [http://docs.python.org/3.2/library/constants.html#None].

	
SortFilterProxyModel.setFilterFunction(column, func, role=<class 'DisplayRole'>)

	Assign a filter function to a column.

role sets which role is used for obtaining the values passed to
func. For example, to hide all rows with a red background in the
second column:

def filter_function(value):
 if isinstance(value, QBrush):
 return value.color() != qte.QColor(QColor.red)
 else:
 return True
proxy.setFilterFunction(1, filter_function, qte.Qt.BackgroundRole)

Re-implemented Methods

	
SortFilterProxyModel.data(index, role)

	
See also

PySide.QtGui.QSortFilterProxyModel.data

	
SortFilterProxyModel.filterAcceptsRow(source_row, source_parent)

	
See also

PySide.QtGui.QSortFilterProxyModel.filterAcceptsRow

	
SortFilterProxyModel.headerData(section, orientation, role)

	
See also

PySide.QtGui.QSortFilterProxyModel.headerData

	
SortFilterProxyModel.mapColumnFromSource(column)

	
See also

HideProxyMixin.mapColumnFromSource

	
SortFilterProxyModel.mapColumnToSource(column)

	
See also

HideProxyMixin.mapColumnToSource

	
SortFilterProxyModel.mapRowFromSource(row)

	
See also

HideProxyMixin.mapRowFromSource

	
SortFilterProxyModel.mapRowToSource(row)

	
See also

HideProxyMixin.mapRowToSource

	
SortFilterProxyModel.setData(index, value, role)

	
See also

PySide.QtGui.QSortFilterProxyModel.setData

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

TextEdit

	
class qte.TextEdit(value='', parent=None)

	A standard line edit for str [http://docs.python.org/3.2/library/functions.html#str] types.

None [http://docs.python.org/3.2/library/constants.html#None] is an acceptable value for setValue
and is converted to an empty string. None [http://docs.python.org/3.2/library/constants.html#None] is never returned by
getValue.

Inherits

	PySide.QtGui.QLineEdit

	EditWidgetABC

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

 	Classes

TypedDelegate

	
class qte.TypedDelegate

	A delegate which handles various python types.

Subclasses should provide at least an implementation of getWidget,
which returns a new instance of a widget to use for editing. The
delegate removes the widget frame for better style consistency.

The default implementation guesses the widget based on the data type
returned from the model by EditRole, using
guessWidget. If the expected data type is known, however, it is
better to use one of the strictly typed delegates: FloatDelegate,
DateTimeDelegate or ListDelegate.

Members

Inherits

	PySide.QtGui.QStyledItemDelegate

New Methods

	
TypedDelegate.getWidget(parent, option, index)

	Return the widget to use for editing.

Re-implemented Methods

	
TypedDelegate.createEditor(parent, option, index)

	
See also

PySide.QtGui.QStyledItemDelegate.createEditor

	
TypedDelegate.setEditorData(editor, index)

	
See also

PySide.QtGui.QStyledItemDelegate.setEditorData

	
TypedDelegate.setModelData(editor, model, index)

	
See also

PySide.QtGui.QStyledItemDelegate.setModelData

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

Functions

	
qte.compactSeparators(toolbar)

	Remove adjacent separators in a QTooBar instance.

	
qte.error(prompt)

	Use a QMessageBox to display an error message.

	
qte.fadeBrush(colour, percentage=0.0)

	Return a brush with colour faded by fraction.

fraction should be between 0 and 1, where 0 has no effect on the colour
and 1 results in white.

	
qte.float2(s, default=0.0)

	Convert s to a float, returning default if it cannot be converted.

>>> float2('33.4', 42.5)
33.4
>>> float2('cannot convert this', 42.5)
42.5
>>> float2(None, 0)
0
>>> print(float2('default does not have to be a float', None))
None

	
qte.getOpenFileName(filters, title='Open', path=None)

	Display an “Open File” dialog.

	Parameters:	
	filters – A list of file filters to apply.

	title – The dialog title. The default is 'Open'.

	path – The path at which to open the dialog.

	Returns:	The name of the file, or None [http://docs.python.org/3.2/library/constants.html#None] if the dialog is canceled.

	
qte.getOption(prompt, options, current=0)

	Display a dropdown list of options.

	Parameters:	
	prompt – Prompt text to display.

	options – A list of strings.

	current – The initially selected index.

	Returns:	The newly selected index

	
qte.getSaveFileName(filters, title='Save', path=None)

	Display a “Save File” dialog.

	Parameters:	
	filters – A list of file filters to apply.

	title – The dialog title. The default is 'Save'.

	path – The path at which to open the dialog.

	Returns:	The name of the file, or None [http://docs.python.org/3.2/library/constants.html#None] if the dialog is canceled.

	
qte.getText(prompt, default='', validate=None, handle_invalid='confirm')

	Requests a text string through a gui prompt.

	Parameters:	
	prompt – Prompt text to display.

	default – Default value in the entry widget.

	validate – A function which accepts a single argument and
returns True [http://docs.python.org/3.2/library/constants.html#True] or False [http://docs.python.org/3.2/library/constants.html#False].

	handle_invalid – Control how an invalid entry is handled.

	Returns:	The value entered, or None [http://docs.python.org/3.2/library/constants.html#None] if the request was
cancelled.

handle_invalid can be any one of the following strings

	Value
	Description

	‘confirm’
	A confirmation dialog is displayed, asking whether to
accept.

	‘warn_accept’
	A warning dialog is displayed and the value is accepted.

	‘warn_deny’
	A warning dialog is displayed and the value can be
re-entered.

	‘cancel’
	Nothing is displayed or accepted.

	
qte.guessWidget(value)

	Attempt to guess which widget to provide based on a value.

The return value is a class which implements EditWidgetABC.
value is the value the widget should work with. If no suitable widget
is found, TextEdit is returned.

	
qte.int2(s, default=0)

	Convert s to an int, returning default if it cannot be converted.

>>> int2('33', 42)
33
>>> int2('cannot convert this', 42)
42
>>> print(int2('default does not have to be an int', None))
None

	
qte.loadResource(qrc, register=True, split=False)

	Compile the resource file qrc.

	Parameters:	
	qrc – The name of a qrc file.

	register – If True [http://docs.python.org/3.2/library/constants.html#True] (default), register the resource data with
Qt’s resource system.

	split – If True [http://docs.python.org/3.2/library/constants.html#True], return tuple of (tree, names, data)

	Returns:	A bytes [http://docs.python.org/3.2/library/functions.html#bytes] object containing the raw, uncompressed
resource data.

The raw resource data is returned, and can be written to a file to fully
mimic Qt’s rcc tool. However, in most cases this is not required and
can be ignored.

If split is True [http://docs.python.org/3.2/library/constants.html#True], a tuple of (tree, names, data) is returned.
Each of theses is a bytes [http://docs.python.org/3.2/library/functions.html#bytes] object and is the same as the data contained
in qt_resource_struct, qt_resource_name and qt_resource_data
respectively, in a file created with pyside-rcc. This is mainly
useful for debugging.

	
qte.loadUi(ui, parent=None, widgets=None)

	Create a new instance of the widget described in ui.

	Parameters:	
	ui – The name of a ui file.

	parent – The parent widget, or None.

	widgets – A list of custom widgets which are reference in ui

	Returns:	A widget instance.

This uses QtUiTools.QUiLoader [http://www.pyside.org/docs/pyside/PySide/QtUiTools/QUiLoader.html] to create the widget, but first
registers all custom widgets in qte and those explicitly set in
widgets, so these widgets can be used in Qt Designer by promoting
them from their base classes. Note that the header file field in
Qt Designer can be set to anything.

loadUi also supports the direct use of qrc files, so they do not
need to be compiled in advance.

	
qte.menuToToolBar(menu, toolbar=None)

	Add all actions in a QMenu to a QTooBar.

If toolbar is missing a new QToolBar is created, otherwise toolbar
is updated. In either case, the toolbar is returned.

Actions are added in the same order as they were to the QMenu
instance. Separators are added to correspond to those in the
menu, and submenus are also added to one level, surrounded
by separators. Further submenus are added as dropdown menus.

	
qte.message(prompt)

	Use a QMessageBox to display an information message.

	
qte.question(prompt)

	Display a question dialog with Yes and No buttons.

The return value is True [http://docs.python.org/3.2/library/constants.html#True] if Yes was selected or False [http://docs.python.org/3.2/library/constants.html#False] if
No was selected.

	
qte.registerWidget(name, widget=None)

	Register a widget referenced in a ui file.

If widget is omitted, then a class decorator is returned, allowing it to
be used like this:

@registerWidget('MyWidget')
class MyWidget(QWidget):
 ...

	
qte.runApp(mainWindow, name)

	Sets the main window and name of the the application and runs it.

This also sets the locale to the current system locale.

Example usage is:

from gui import MainWindow

if __name__== '__main':
 runApp(MainWindow, 'My Application')

Once the application has been terminated, runApp calls
sys.exit [http://docs.python.org/3.2/library/sys.html#sys.exit], so this should be the final command to be run.

mainWindow can be either a QWidget instance or subclass. If it is
a subclass, then an instance is created.

This is implemented by calling the following:

locale.setLocal(locale.LC_ALL, '')
wiApplicationmainWindow()
Application.set_appName(name)
Application.setMainWindow(win)
win.setWindowTitle(name)
win.show()
sys.exit(QX_app.exec_())

	
qte.standardBrush(color_role)

	Return a brush for a Qt standard color role.

	
qte.standardIcon(icon)

	Return a standard icon in the application style.

icon may either be a QStyle.StandardPixmap flag (e.g.
QStyle.SP_DirIcon) or the name of a standard pixmap, omitting the
‘SP’ portion (e.g. 'DirIcon').

	
qte.textHeight(widget, text=None)

	Return the height of text painted by widget.

If text is omitted, then the height of a single character is returned.

	
qte.textWidth(widget, text=None)

	Return the width of text painted by widget.

If text is omitted, the average character width is returned.

	
qte.uiWrapper(uifile)

	Return a class inherited from a widget defined in a ui file.

This is typically used when customising a widget created using
Qt Designer:

class MyWidget(uiWrapper('mywidget.ui')):
 def __init__(self, value):
 super().__init__()
 self.value = value

Resource files referenced by the ui file are automatically loaded
using loadResource.

There are several opportunities for naming clashes, and understanding
these requires a knowledge of how the working globals are used.

	The globals dict is first populated with all available widgets,
i.e those provided by PySide, qte and registered using
registerWidget.

	When loading the ui file, a special class is created named
UI_<widget_name>, which will override any similarly named widgets.

	When the class is first initialised, all widgets added to in in Qt
Designer are added to its dictionary.

To avoid the potential pitfalls, ensure that registered widget names do
not start with Ui_ and that objects added in Qt Designer do not
have the same name as a parent widget property. For example, do not
add a child widget named “objectName”.

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	qte 0.6.0 documentation

UIs and Resources

PySide’s resource system relies on compiling all resource files before using
them, which goes against the normal python workflow. To improve upon this,
qte provides functions to dynamically load resources and user interfaces.

Working with Resources

Resources should be handled in a similar with qte as with Qt; all resources
should be stored in a location referenced by a qrc file. In Qt, this would
usually be compiled into a binary resource file when the code is compiled.
In qte, it is preferable not to compile anything, so the files are read
directly. The loadResource function parses a qrc file and loads all
referenced resources into the Qt resource system, so that they can be loaded
using normal Qt syntax (e.g. QIcon(':myicon.png')).

Working with UIs

ui files created with Qt Designer can be loaded in several
different ways, depending on their usage. The simplest way is to
create a new instance of the widget defined in the file by calling loadUi.
However, if the widget requires further customisation then it is preferable
to create a new widget class rather than an instance. This can be done
with the uiWrapper function.

Resource file reference

The specification for rcc files is not documented, but from a study of the rcc
source code, it appears that this is the format: The file is binary and
consists of four sections, in order.

Header

This is general information about the file.

	Position
	Size
	Value
	Description

	0
	4
	“qres”
	Magic number

	4
	4
	0x01
	RCC version. This is always 0x01

	8
	4
	t_off
	Position of start of Tree section (usually 20)

	12
	4
	d_off
	Position of start of Data section
(= n_off + len(names))

	16
	4
	n_off
	Position of start of Name section
(= t_off + len(tree))

Tree

The Tree section contains information about the relative positions of
files and directories in the resource tree. It is a sequence of records,
sorted by the hash of the node name in each branch. For example:

root

- a

- b

-a

-c

-c

The structure of each node depends on whether if references a file or a
directory. For directories (including root):

	Position
	Size
	Value
	Description

	0
	4
	n_off
	Offset of name record in the Names section

	4
	2
	flags
	A bitwise OR combination of flags. 0x1 indicates
a compressed file. 0x2 indicates a directory.

	6
	4
	c_child
	The number of children nodes in the tree. The
children records will follow this node.

	10
	4
	c_off
	The index position of the node in the list of
nodes. root is always 1 and they are numbered
sequentially, including file nodes (although
the number is not recorded for file nodes).

For files:

	Position
	Size
	Value
	Description

	0
	4
	n_off
	Offset of name record in the Names section

	4
	2
	flags
	A bitwise OR combination of flags. 0x1 indicates
a compressed file. 0x2 indicates a directory.
Normal files are either 0x0 or 0x1.

	6
	2
	l_cntry
	The locale’s country code as specified in
QLocale. The locale defaults to C.

	8
	2
	l_lang
	The locale’s language code as specified in
QLocale. The locale defaults to C.

	10
	4
	c_off
	The node’s offset in the Data section.

Names

This section contains a list of node names, in the same order as they
appear in the Tree section.

	Position
	Size
	Value
	Description

	0
	2
	c_name
	The length of the name.

	4
	8
	h_name
	The hash of the name (calculated using
qHash).

	8
	2 * c_name
	name
	The name, encoded in unicode as 2-bytes
per character.

Data

This is the actual data in the resources and only applies to files, not
directories.

	Position
	Size
	Value
	Description

	0
	4
	l_data
	The length of the data.

	4
	l_data
	data
	The data contained in the resource, compressed
if the appropriate flag is set in the Tree
section.

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	qte 0.6.0 documentation

Model/View framework

PySide, through Qt, has an extensive and intricate model/view framework.
This package provides a simpler interface to this through a single
model class, DataModel and a single view class DataView which are
built on top of QAbstractTableModel and QTableView respectively
but which support tabular data structures. A HideProxyMixin class can be
used as a mixin for proxy models to automatically map unrecognised
attribute lookups to source models. Two new proxy models,
SortFilterProxyModel and AppendProxyModel use this mixin.

Models

	DataModel

	CheckFilterModel

Proxy Models

A new mechanism is provided to hide additional proxy layers between the
view and the source model by use of a HideProxyMixin mixin class. Two
new proxy classes are also available: AppendProxyModel and
SortFilterProxyModel.

	HideProxyMixin

	AppendProxyModel

	SortFilterProxyModel

Delegates

The basic delegate is TypedDelegate, which intelligently manages several
data types, including datetime [http://docs.python.org/3.2/library/datetime.html#datetime] and SelectList values. Delegates for
specific types are subclassed from this, and may be used explicitly instead
for better control.

	TypedDelegate

	DateTimeDelegate

	FloatDelegate

	ListDelegate

Views

	DataView

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	qte 0.6.0 documentation

 Python Module Index

 q

 			

 		
 q	

 	
 	
 qte	

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	qte 0.6.0 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	

 	abort() (qte.SafeWriter method)

 	addStateObject() (qte.Application method)

 	addStateObjects() (qte.Application method)

 	

 	appendDataChanged() (qte.AppendProxyModel method)

 	AppendProxyModel (class in qte)

 	Application (class in qte)

C

 	

 	cache_refresh() (qte.DataModel method)

 	CheckBox (class in qte)

 	CheckFilterModel (class in qte)

 	clear() (qte.AppendProxyModel method)

 	

 	(qte.SelectList method)

 	close() (qte.Document method)

 	

 	(qte.SafeWriter method)

 	closeDocument() (qte.Document method)

 	columnCount() (qte.AppendProxyModel method)

 	

 	(qte.DataModel method)

 	

 	ComboBox (class in qte)

 	compactSeparators() (in module qte)

 	copy() (qte.DataView method)

 	copyRole (qte.DataView attribute)

 	createEditor() (qte.TypedDelegate method)

 	currentPath (qte.Document attribute)

 	currentRowChanged() (qte.DataView method)

D

 	

 	data() (qte.AppendProxyModel method)

 	

 	(qte.CheckFilterModel method)

 	(qte.DataModel method)

 	(qte.SortFilterProxyModel method)

 	DataModel (class in qte)

 	DataView (class in qte)

 	DateEdit (class in qte)

 	DateTimeDelegate (class in qte)

 	DateTimeEdit (class in qte)

 	

 	defaults (qte.AppendProxyModel attribute)

 	

 	(qte.DataView attribute)

 	displayText() (qte.DateTimeDelegate method)

 	

 	(qte.FloatDelegate method)

 	Document (class in qte)

 	documentClosed() (qte.Document method)

 	documentOpened() (qte.Document method)

E

 	

 	EditWidgetABC (class in qte)

 	emitValueChanged() (qte.EditWidgetABC method)

 	

 	error() (in module qte)

 	ext (qte.Document attribute)

F

 	

 	fadeBrush() (in module qte)

 	filterAcceptsRow() (qte.SortFilterProxyModel method)

 	filterChanged() (qte.CheckFilterModel method)

 	filterFunction() (qte.SortFilterProxyModel method)

 	flags() (qte.AppendProxyModel method)

 	

 	(qte.DataModel method)

 	

 	float2() (in module qte)

 	FloatDelegate (class in qte)

 	FloatEdit (class in qte)

 	fullName (qte.Document attribute)

G

 	

 	getOpenFileName() (in module qte)

 	getOption() (in module qte)

 	getSaveFileName() (in module qte)

 	getText() (in module qte)

 	

 	getValue() (qte.EditWidgetABC method)

 	getWidget() (qte.DateTimeDelegate method)

 	

 	(qte.FloatDelegate method)

 	(qte.ListDelegate method)

 	(qte.TypedDelegate method)

 	guessWidget() (in module qte)

H

 	

 	hasChanged (qte.Document attribute)

 	headerData() (qte.AppendProxyModel method)

 	

 	(qte.DataModel method)

 	(qte.SortFilterProxyModel method)

 	

 	HideProxyMixin (class in qte)

I

 	

 	indexselect() (qte.SelectList method)

 	indexselection (qte.SelectList attribute)

 	indexunselect() (qte.SelectList method)

 	

 	int2() (in module qte)

 	IntEdit (class in qte)

 	isOpen() (qte.Document method)

L

 	

 	ListDelegate (class in qte)

 	loadResource() (in module qte)

 	

 	loadUi() (in module qte)

M

 	

 	mainWindow() (qte.Application method)

 	mapColumnFromSource() (qte.AppendProxyModel method)

 	

 	(qte.HideProxyMixin method)

 	(qte.SortFilterProxyModel method)

 	mapColumnToSource() (qte.AppendProxyModel method)

 	

 	(qte.HideProxyMixin method)

 	(qte.SortFilterProxyModel method)

 	mapFromSource() (qte.AppendProxyModel method)

 	mapRowFromSource() (qte.AppendProxyModel method)

 	

 	(qte.HideProxyMixin method)

 	(qte.SortFilterProxyModel method)

 	

 	mapRowToSource() (qte.AppendProxyModel method)

 	

 	(qte.HideProxyMixin method)

 	(qte.SortFilterProxyModel method)

 	mapToSource() (qte.AppendProxyModel method)

 	menuToToolBar() (in module qte)

 	message() (in module qte)

N

 	

 	name (qte.Document attribute)

 	name() (qte.SafeWriter method)

 	new() (qte.Document method)

 	

 	newDocument() (qte.Document method)

 	nextCell() (qte.DataView method)

O

 	

 	open() (qte.Document method)

 	openDocument() (qte.Document method)

 	

 	openFilters (qte.Document attribute)

 	OptionsBox (class in qte)

P

 	

 	paste() (qte.DataView method)

 	pasteAll() (qte.DataView method)

 	pasteRole (qte.DataView attribute)

 	

 	pasteToSelection() (qte.DataView method)

 	path (qte.Document attribute)

Q

 	

 	qte (module)

 	

 	question() (in module qte)

R

 	

 	record() (qte.DataModel method)

 	registerWidget() (in module qte)

 	restoreGeometry() (qte.Application method)

 	restoreState() (qte.Application method)

 	

 	(qte.DataView method)

 	

 	restoreStates() (qte.Application method)

 	rowCount() (qte.CheckFilterModel method)

 	

 	(qte.DataModel method)

 	runApp() (in module qte)

S

 	

 	SafeWriter (class in qte)

 	save() (qte.Document method)

 	saveAs() (qte.Document method)

 	saveDocument() (qte.Document method)

 	saveFilters (qte.Document attribute)

 	saveGeometry() (qte.Application method)

 	saveState() (qte.Application method)

 	

 	(qte.DataView method), [1], [2]

 	saveStates() (qte.Application method)

 	select() (qte.SelectList method)

 	selectedState() (qte.CheckFilterModel method)

 	selection (qte.SelectList attribute)

 	SelectList (class in qte)

 	setColumnWidth() (qte.DataView method), [1]

 	setData() (qte.CheckFilterModel method)

 	

 	(qte.DataModel method)

 	(qte.SortFilterProxyModel method)

 	setEditorData() (qte.TypedDelegate method)

 	setFilterFunction() (qte.SortFilterProxyModel method)

 	

 	setFlags() (qte.DataModel method)

 	setItemDelegate() (qte.DataView method)

 	setItemDelegateForColumn() (qte.DataView method)

 	setItemDelegateForRow() (qte.DataView method)

 	setMainWindow() (qte.Application method)

 	setModel() (qte.DataView method)

 	setModelData() (qte.TypedDelegate method)

 	setModels() (qte.DataView method)

 	settings() (qte.Application method)

 	setValue() (qte.DataModel method)

 	

 	(qte.EditWidgetABC method)

 	setView() (qte.AppendProxyModel method)

 	SortFilterProxyModel (class in qte)

 	source() (qte.DataModel method)

 	standardBrush() (in module qte)

 	standardIcon() (in module qte)

T

 	

 	TextEdit (class in qte)

 	textHeight() (in module qte)

 	textWidth() (in module qte)

 	

 	titles (qte.DataModel attribute)

 	TypedDelegate (class in qte)

 	types() (qte.EditWidgetABC method)

U

 	

 	uiWrapper() (in module qte)

 	unselect() (qte.SelectList method)

 	

 	unsetView() (qte.AppendProxyModel method)

V

 	

 	value() (qte.DataModel method)

 	

 	valueChanged() (qte.EditWidgetABC method)

 Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		qte 0.6.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, David Townshend.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

