
qte-doc Documentation
Release 0.5.0

David Townshend

September 06, 2012

Contents

1 Key features 3

2 Installation 5

3 Table of contents 7
3.1 Tutorial . 7
3.2 UIs and Resources . 8
3.3 Edit Widgets . 11
3.4 Model/View framework . 14
3.5 Core Tools . 21

Python Module Index 25

i

ii

qte-doc Documentation, Release 0.5.0

qte is a wrapper around the PySide GUI toolkit making it simpler and more pythonic to use. No changes are made
to the original PySide classes, but new classes and functions are introduced which effectively replace much of the
most commonly used PySide GUI functionality.

Contents 1

qte-doc Documentation, Release 0.5.0

2 Contents

CHAPTER 1

Key features

• All objects (i.e. those contained in PySide.QtGui, PySide.QtCore, and the new objects provided by
this package) can be imported from a single namespace, e.g:

>>> from qte import QRect, QWidget, DataModel

Or, more commonly:

>>> import qte
>>> rect = qte.QRect()

The PySide objects, i.e. those prefixed with “Q”, are exactly the same as those imported directly from
PySide, all changes are in the new classes.

• A number of convenience function had been added. See Core Tools for details.

• The PySide model/view framework has been extended and simplified. See Model/View framework for more
information.

• A new singleton Application class is available, extending the functionality of QApplication. See
Application and runApp for more information.

• A Document class is provided to manage typical document application functions, such as opening, saving,
etc.

3

qte-doc Documentation, Release 0.5.0

4 Chapter 1. Key features

CHAPTER 2

Installation

qte can be installed from the cheeseshop, or downloaded directly from http://bitbucket.org/aquavitae/qte. It re-
quires PySide >= 1.1.

5

http://bitbucket.org/aquavitae/qte

qte-doc Documentation, Release 0.5.0

6 Chapter 2. Installation

CHAPTER 3

Table of contents

3.1 Tutorial

3.1.1 Introduction

Qt is a highly complex and versatile toolkit, but this flexibility sometimes makes it difficult to formulate workflows.
This short tutorial illustrates a suitable workflow for developing desktop applications with PySide and qte.

3.1.2 Hello World

All tutorials start with a “Hello World” example:

import qte
label = qte.QLabel(’Hello World!’)
qte.runApp(label, ’MyApp’)

And here is an explanation of each line.

1. qte is imported. All of PySide’s QtCore and QtGui classes, can be accessed directly from this names-
pace, as well as the extra objects provided by qte.

2. A new QLabel is created from the qte namespace.

3. The application is launched with the label as the main window and the application name as ‘MyApp’.

The most important part of this example is the qte.runApp function. This is essentially equivalent to:

qte.Application().setApplicationName(’MyApp’)
qte.Application().setMainWindow(label)
win.setWindowTitle(’MyApp’)
win.show()
qte.Application().exec_()
sys.exit()

Note that qte.Application is used instead of QApplication. The qte.Application class provides a
few extra features which make it more suitable to desktop applications, such as settings management. It is also a
singleton which on its first initialisation calls QApplication([sys.argv]).

3.1.3 UIs and Resources

Qt allows for two ways of designing user interfaces; they can either be hard coded or created using Qt Designer.
In practice, it is common for a combination of these methods to be used. When coding Qt in C++, the normal

7

qte-doc Documentation, Release 0.5.0

workflow consists of designing the UI and creating resources in Qt Designer, then compiling them into binary files
which can be inserted into the executable. In python, code is seldom compiled to an executable at all, so compiling
ui and qrc files becomes a rather annoying and tedious exercise. qte provides an alternative may of dealing with
these.

Resources can be compiled at runtime using qte.loadResource. The binary data created by this is identical
to the output of rcc, but the function is implemented purely in python, with no dependency on rcc or pyside-rcc at
all. If used with the register argument, it also registers the data with the resource system so that resources can be
used immediately.

PySide’s QUiLoader class can be used to create widgets at runtime from ui files. qte extends this with
qte.loadUi and qte.uiWrapper. qte.loadUi does the same job as QUiLoader.load, but first regis-
ters custom widgets and resources. qte.uiWrapper wraps the widget in another class and is especially useful
for QMainWindows which cannot be promoted in Qt Designer.

The following example shows how to load and inherit from a QMainWindow interface created in Qt Designer.
The window has a single button called showDialog which, when clicked, loads and displays a dialog from
another ui file with itself as the parent. The button icon is read from a resource file:

import qte

class MainWindow(qte.UiWrapper(’ui/mainwindow.ui’):

def __init__(self):
qte.loadResource(’icons.qrc’, register=True)
self.showDialog.setIcon(’:dialog.png’)
self.showDialog.clicked.connect(self.loadDialog)

def loadDialog(self):
dialog = qte.QUiLoader().load(’ui/dialog.ui’, self)
dialog.show()

3.1.4 Model/View Programming

One of the main problems with Qt’s model/view framework in a python environment is the assumption that data is
stored, or only visible through a QAbstractItemModel. In C++ this is an ideal structure for storing structured
data, but in python lists and dicts provide more flexibility. qte.DataModel gives this flexibility by wrapping a
QAbstractItemModel interface around generic python structures. Currently it only supports tabular data (i.e.
which can be displayed in a QTableView), but in the future tree-like structures will be supported too.

An qte.DataView class is inherited from QTableView and has a few extra features and customised defaults.

There are also several new delegates, all based on qte.TypedDelegate which supports more data types than
the default QItemDelegate.

3.2 UIs and Resources

PySide’s resource system relies on compiling all resource files before using them, which goes against the normal
python workflow. To improve upon this, qte provides functions to dynamically load resources and user interfaces.

3.2.1 Working with Resources

Resources should be handled in a similar with qte as with Qt; all resources should be stored in a location
referenced by a qrc file. In Qt, this would usually be compiled into a binary resource file when the code is
compiled. In qte, it is preferable not to compile anything, so the files are read directly. The loadResource
function parses a qrc file and loads all referenced resources into the Qt resource system, so that they can be loaded
using normal Qt syntax (e.g. QIcon(’:myicon.png’)).

8 Chapter 3. Table of contents

qte-doc Documentation, Release 0.5.0

3.2.2 Working with UIs

ui files created with Qt Designer can be loaded in several different ways, depending on their usage. The simplest
way is to create a new instance of the widget defined in the file by calling loadUi. However, if the widget
requires further customisation then it is preferable to create a new widget class rather than an instance. This can
be done with the uiWrapper function.

3.2.3 API

qte.loadResource(qrc[, register=True[, split=False]])
Compile the resource file qrc.

Parameters

• qrc – The name of a qrc file.

• register – If True (default), register the resource data with Qt’s resource system.

• split – If True, return tuple of (tree, names, data)

Returns A bytes object containing the raw, uncompressed resource data.

The raw resource data is returned, and can be written to a file to fully mimic Qt’s rcc tool. However, in most
cases this is not required and can be ignored.

If split is True, a tuple of (tree, names, data) is returned. Each of theses is a bytes object and is
the same as the data contained in qt_resource_struct, qt_resource_name and qt_resource_data respectively,
in a file created with pyside-rcc. This is mainly useful for debugging.

qte.loadUi(ui[, parent[, widgets]])
Create a new instance of the widget described in ui.

Parameters

• ui – The name of a ui file.

• parent – The parent widget, or None.

• widgets – A list of custom widgets which are reference in ui

Returns A widget instance.

This uses QtUiTools.QUiLoader to create the widget, but first registers all custom widgets in qte and
those explicitly set in widgets, so these widgets can be used in Qt Designer by promoting them from their
base classes. Note that the header file field in Qt Designer can be set to anything.

loadUi calls loadResource to register all resource files specified in the ui file.

qte.registerWidget(name[, widget])
Register a widget referenced in a ui file.

If widget is omitted, then a class decorator is returned, allowing it to be used like this:

@registerWidget(’MyWidget’)
class MyWidget(QWidget):

...

qte.uiWrapper(ui[, parent])
Return a class inherited from a widget defined in a ui file.

This is typically used when customising a widget created using Qt Designer:

class MyWidget(uiWrapper(’mywidget.ui’)):
def __init__(self, value):

super().__init__()
self.value = value

3.2. UIs and Resources 9

http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/functions.html#bytes
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/functions.html#bytes

qte-doc Documentation, Release 0.5.0

Resource files referenced by the ui file are automatically loaded using loadResource.

There are several opportunities for naming clashes, and understanding these requires a knowledge of how
the working globals are used.

•The globals dict is first populated with all available widgets, i.e those provided by PySide, qte and
registered using registerWidget.

•When loading the ui file, a special class is created named UI_<widget_name>, which will override
any similarly named widgets.

•When the class is first initialised, all widgets added to in in Qt Designer are added to its dictionary.

To avoid the potential pitfalls, ensure that registered widget names do not start with Ui_ and that objects
added in Qt Designer do not have the same name as a parent widget property. For example, do not add a
child widget named “objectName”.

3.2.4 Resource file reference

The specification for rcc files is not documented, but from a study of the rcc source code, it appears that this is the
format: The file is binary and consists of four sections, in order.

Header

This is general information about the file.

Position Size Value Description
0 4 “qres” Magic number
4 4 0x01 RCC version. This is always 0x01
8 4 t_off Position of start of Tree section (usually 20)
12 4 d_off Position of start of Data section (= n_off + len(names))
16 4 n_off Position of start of Name section (= t_off + len(tree))

Tree

The Tree section contains information about the relative positions of files and directories in the resource tree. It is
a sequence of records, sorted by the hash of the node name in each branch. For example:

root
- a
- b

-a
-c

-c

The structure of each node depends on whether if references a file or a directory. For directories (including root):

10 Chapter 3. Table of contents

qte-doc Documentation, Release 0.5.0

Po-
si-
tion

Size Value Description

0 4 n_off Offset of name record in the Names section
4 2 flags A bitwise OR combination of flags. 0x1 indicates a compressed file. 0x2 indicates a

directory.
6 4 c_childThe number of children nodes in the tree. The children records will follow this node.
10 4 c_off The index position of the node in the list of nodes. root is always 1 and they are

numbered sequentially, including file nodes (although the number is not recorded for file
nodes).

For files:

Posi-
tion

Size Value Description

0 4 n_off Offset of name record in the Names section
4 2 flags A bitwise OR combination of flags. 0x1 indicates a compressed file. 0x2 indicates a

directory. Normal files are either 0x0 or 0x1.
6 2 l_cntry The locale’s country code as specified in QLocale. The locale defaults to C.
8 2 l_lang The locale’s language code as specified in QLocale. The locale defaults to C.
10 4 c_off The node’s offset in the Data section.

Names

This section contains a list of node names, in the same order as they appear in the Tree section.

Position Size Value Description
0 2 c_name The length of the name.
4 8 h_name The hash of the name (calculated using qHash).
8 2 * c_name name The name, encoded in unicode as 2-bytes per character.

Data

This is the actual data in the resources and only applies to files, not directories.

Posi-
tion

Size Value Description

0 4 l_data The length of the data.
4 l_data data The data contained in the resource, compressed if the appropriate flag is set in

the Tree section.

3.3 Edit Widgets

PySide has a range of simple, one-line editing widgets with slightly different APIs. In order to make it possible to
program type-independantly, several of these have been subclassed to conform with EditWidgetABC.

3.3.1 EditWidgetABC

class qte.EditWidgetABC
Define the API of a standard editing widget.

EditWidgets supports a specific set of types, defined by its types class method. They may also handle
and return None, which indicates an invalid value. It is up to the subclass implementation to deal with
type checking and conversions. While all of these classes support setting the value to None, they do not
necessarily have to return None. This behaviour depends on the specific class.

3.3. Edit Widgets 11

http://docs.python.org/3.2/library/constants.html#None

qte-doc Documentation, Release 0.5.0

valueChanged
This signal is emitted whenever the value changes.

It is similar to the textChanged signal in a QLineEdit.

emitValueChanged()
Called by subclasses to raise the valueChanged signal.

getValue()
Return the value of the widget. This is similar to QLineEdit.text.

setValue(value)
Set the value of the widget. This is similar to QLineEdit.setText.

classmethod types()
Return a list of types supported by the widget.

3.3.2 CheckBox

class qte.CheckBox([value=False, parent=None])
A standard check box implementing EditWidgetABC

Inherits: QLineEdit
Datatype: bool

None is an acceptable value for setValue and getValue and indicates that the check box is partially
checked.

3.3.3 ComboBox

class qte.ComboBox([value=’‘, parent=None])
An editable combo box implementing EditWidgetABC which reports on the current text.

Inherits: QComboBox
Datatype: str

None is an acceptable value for setValue and is converted to an empty string. None is returned by
getValue if no index is selected.

3.3.4 DateEdit

class qte.DateEdit([value=None, parent=None])
A standard date edit widget implementing EditWidgetABC.

Inherits: QDateEdit
Datatype: datetime.date

None is an acceptable value for setValue and is converted to the default date used by QDateEdit.
None is never returned by getValue.

12 Chapter 3. Table of contents

http://docs.python.org/3.2/library/functions.html#bool
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/functions.html#str
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/datetime.html#datetime.date
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/constants.html#None

qte-doc Documentation, Release 0.5.0

3.3.5 DateTimeEdit

class qte.DateTimeEdit([value=None, parent=None])
A standard date and time edit widget implementing EditWidgetABC.

Inherits: QDateTimeEdit
Datatype: datetime.datetime

None is an acceptable value for setValue and is converted to the default value used by
QDateTimeEdit. None is never returned by getValue.

3.3.6 FloatEdit

class qte.FloatEdit([value=None, parent=None, decimals=None])
A standard line edit widget for floats implementing EditWidgetABC.

Inherits: QLineEdit
Datatype: float

If given, decimals sets the number of decimals to round the value to.

None is an acceptable value for setValue and is converted to an empty string. None is returned by
getValue if the value cannot be converted to a float.

3.3.7 IntEdit

class qte.IntEdit([value=None, parent=None])
A standard line edit widget for integers implementing EditWidgetABC

Inherits: QLineEdit
Datatype: int

None is an acceptable value for setValue and is converted to an empty string. None is returned by
getValue if the value cannot be converted to an integer.

3.3.8 OptionsBox

class qte.OptionsBox([value=None, parent=None])
A combo box which allows a single selection from a list of options.

Inherits QComboBox
Datatype: SelectList

Inherits QComboBox
Datatype: SelectList

3.3. Edit Widgets 13

http://docs.python.org/3.2/library/datetime.html#datetime.datetime
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/functions.html#float
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/functions.html#int
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/constants.html#None

qte-doc Documentation, Release 0.5.0

None is an acceptable value for setValue and is converted to an empty SelectList. None is never
returned by getValue. The SelectList passed to setValue is copied and the selected option tracked
by index. This means that non-string types in setValue will be returned by getValue intact.

3.3.9 TextEdit

class qte.TextEdit([value=’‘, parent=None])
A standard line edit for strings implementing EditWidgetABC.

Inherits: QLineEdit
Datatype: str

None is an acceptable value for setValue and is converted to an empty string. None is never returned
by getValue.

3.4 Model/View framework

PySide, through Qt, has an extensive and intricate model/view framework. This package provides a simpler
interface to this through a single model class, DataModel and a single view class DataView which are built on
top of QAbstractTableModel and QTableView respectively but which support tabular data structures. A
HideProxyMixin class can be used as a mixin for proxy models to automatically map unrecognised attribute
lookups to source models. Two new proxy models, SortFilterProxyModel and AppendProxyModel
use this mixin.

3.4.1 DataModel

The DataModel works on the premise that the data itself is stored and managed in some sort of python structure,
for example a list. The data is assume to be essentially tabular with defined columns. The most important
method is source, which returns an iterator over source records and is internally cached by the model to improve
performance. source can be re-implemented through inheritance, or by simply assigning the name to a function,
e.g.:

mymodel.source = lambda: iter(mydata)

The default implemented returns the same list every time, so it may be used to assign static data, e.g.:

mymodel.source().append([’new row’])

Each row in the table is represented by an item returned by source. The only requirement of the source items
are that they should also be iterable.

Columns are defined by setting a list of column titles to DataModel.titles.

class qte.DataModel([titles])
Create a new DataModel with a list of column titles.

This inherits from QAbstractTableModel and implements columnCount, rowCount, flags,
headerData, data and setData.

cache_timeout
Minimum number of seconds between cache refreshes (default = 1).

titles
A list of column titles.

cache_refresh()
Force a cache refresh now.

14 Chapter 3. Table of contents

http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/functions.html#str
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/functions.html#list

qte-doc Documentation, Release 0.5.0

columnCount([parent])
Return the number of columns as determined from titles.

parent is superfluous and is ignored. It is only provided for Qt compatibility.

data(index, role)
Return the data in source for DisplayRole and EditRole.

flags(index)
Return Qt.ItemFlags for a cell.

By default, all cells are selectable, editable and enabled.

See Also:

setFlags

headerData(section, orientation, role)
Return header information.

For horizontal headers and Qt.DisplayRole, return the relevant item in titles.

record(row)
Return the record currently appearing on a row.

Parameters row – Integer row number.

Returns A record

This takes into account filtering and sorting on the model.

rowCount([parent])
Return the number of visible rows under parent.

parent is superfluous and is ignored. It is only provided for Qt compatibility.

setData(index, value, role)
This has been re-implemented to call setValue for EditRole.

setFlags(column)
A convenience method to set flags for column.

Flags may be set either as an bitwise-or combination of Qt.ItemFlags or as a space-separated list
of any of the following strings.

String Qt.ItemFlag Description
selectable ItemIsSelectable It can be selected.
editable ItemIsEditable It can be edited.
drag ItemIsDragEnabled It can be dragged.
drop ItemIsDropEnabled It can be used as a drop target.
checkable ItemIsUserCheckable It can be checked or unchecked by the user.
enabled ItemIsEnabled The user can interact with the item.
tristate ItemIsTristate The item is checkable with three separate states.

setValue(record, column, value)
Set the value in record for a specific column to value. By default, this assigns value using
record[column] = value. This should never be called directly, or the Qt.dataChanged
signal will not be emitted.

Parameters

• record – A record in source.

• column – The column number.

• value – The value to store in the record.

Returns True if the value was stored successfully.

3.4. Model/View framework 15

http://docs.python.org/3.2/library/constants.html#True

qte-doc Documentation, Release 0.5.0

source()
Return an iterator over source data that this model represents. The default implemention returns the
same list on every call.

value(record, column)
Return the value stored in record for a specific column. By default, this uses index lookup on the
column number, i.e record[column].

Parameters

• record – A record in source.

• column – The column number.

Returns The value stored in the record.

3.4.2 CheckFilterModel

class qte.CheckFilterModel([source[, titles]])
A list model presenting filter options.

This subclasses from DataModel, and has a single column containing "Select All" and the values in
source. "Select All" is tristate, indicating (and setting) the check state of all other values.

If titles is omitted, a single column is assumed.

This would commonly be used as the model of a combo or list widget to allow the user to filter out values
from a data source. By default, all items are selected and any new ones added are automatically selected.

When the filter changes, a filterChanged signal is emitted with a set of unselected values.

filterChanged(set)
This signal is emitted when the checkstate of any item changes.

The value is a set containing the unselected values in the list.

selectedState()
Return the check state of the "Select All" option

3.4.3 Proxy Models

A new mechanism is provided to hide additional proxy layers between the view and the source model by use
of a HideProxyMixin mixin class. Two new proxy classes are also available: AppendProxyModel and
SortFilterProxyModel.

class qte.HideProxyMixin
This mixin class provides access to source model attributes and methods.

The following example illustrates usage on a custom model:

class SortModel(QSortFilterProxyModel, HideProxyMixin):
pass

mdata = QStandardItemModel()
msort = SortModel()
msort.setSourceModel(mdata)

This makes the following two calls identical:

item = msort.itemFromIndex(proxyindex)
item = msort.sourceModel().itemFromIndex(msort.mapToSource(proxyindex))

Arguments and return values may be converted if required, e.g. mapping of model indexes. The conver-
sions used are based on annotations in the source model, which should be one of ’row’, ’column’ or

16 Chapter 3. Table of contents

qte-doc Documentation, Release 0.5.0

’index’. The conversions are done by methods in the proxy model mapRowFromSource, mapColumn-
FromSource, mapFromSource and the corresponding ToSource methods. mapToSource and mapFromSource
are defined by PySide. The others are proxided by the mixin, but may be re-implemented.

SortFilterProxyModel and AppendProxyModel use this mixin.

mapRowToSource(row)
Map a row to the source model.

This simply calls mapToSource with an index in column 0, and should be re-implemented when a
more direct method can be used.

mapColumnToSource(column)
Map a column to the source model.

This simply calls mapToSource with an index in row 0, and should be re-implemented when a more
direct method can be used.

mapRowFromSource(row)
Map a row from the source model.

This simply calls mapFromSource with an index in column 0, and should be re-implemented when
a more direct method can be used.

mapColumnFromSource(column)
Map a column from the source model.

This simply calls mapFromSource with an index in row 0, and should be re-implemented when a
more direct method can be used.

class qte.AppendProxyModel([parent])
This proxy model provides an interface to append rows.

For the most part, data is mapped straight the source model. However, this model always provides an
additional empty row at the end which can be used to enter new data. Every time the data is changed in this
row, the appendDataChanged signal is emitted. The source model is expected to emit rowsInserted
if the append data was accepted, so if the source model emits this signal to indicate appending a single row,
the pending data is cleared.

This class inherits from HideProxyMixin, and provides all the expected mapping functions.

defaults
A dict containing default value to use when editing pending data.

Each value in this dict should be keyed by the column number. If no default is set, None is used.

appendDataChanged(dict)
This signal is emitted whenever the pending data changed.

The argument is a dict of values set keyed by column number. This signal is normally connected to a
slot in the source model, which is expected to emit rowsInserted if the data is accepted.

clear([column])
Clear pending data by column.

If column is omitted, then clear everything.

data(index[, role=Qt.DisplayRole])
Return data at index for role.

If index refers any row except the pending row, the source model data is returned. For the pending
row, the return value is as follows:

Role
BackgroundRole A brush using QPalette.Midlight
EditRole Pending, default or None, depending what has been set.
DisplayRole Pending or an empty string, depending what has been set.

3.4. Model/View framework 17

http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/constants.html#None

qte-doc Documentation, Release 0.5.0

flags(index)
Return the flags for an index.

Return the source model’s flags for all but the last row. The last row returns ItemIsEnabled and
ItemIsEditable.

headerData(section, orientation, role)
Return header data from the source model.

In addition, the vertical header at the append row has a “clear” icon. The sectionClicked signal
for this header should be connected to clear for it to work. This is done automatically if used with
DataView.

setView(view)
Called when the model is set to a DataView.

unsetView(view)
Called when the model is removed from a DataView.

class qte.SortFilterProxyModel
Applies per column filtering to QSortFilterProxyModel.

This behaves almost exactly the same as QSortFilterProxyModel, but allows separate filters for each
column. Also, the filters are callables which take a value and return True (display) or False (hide).

This class inherits from HideProxyMixin, and provides all the expected mapping functions.

filterFunction(column):
Return the filter function and role as set by setFilterFunction.

The return value is a tuple of (function, role). If no filter has been set, both values are None.

setFilterFunction(column, func[, role=qte.Qt.DisplayRole])
Assign a filter function to a column.

role sets which role is used for obtaining the values passed to func. For example, to hide all rows with
a red background in the second column:

def filter_function(value):
if isinstance(value, QBrush):

return value.color() != qte.QColor(QColor.red)
else:

return True
proxy.setFilterFunction(1, filter_function, qte.Qt.BackgroundRole)

3.4.4 Delegates

The basic delegate is TypedDelegate, which intelligently manages several data types, including datetime
and SelectList values. Delegates for specific types are subclassed from this, and may be used explicitly
instead for better control.

class qte.TypedDelegate(parent)
A delegate which handles various python types.

Subclasses should provide at least an implementation of getWidget, which returns a new instance of a
widget to use for editing. The delegate removes the widget frame for better style consistency.

The default implementation guesses the widget based on the data type returned from the model by
EditRole, using guessWidget. If the expected data type is known, however, it is better to use one
of the strictly typed delegates, FloatDelegate, DateTimeDelegate or ListDelegate.

getWidget(parent, option, index)
Return the widget to use for editing.

class qte.DateTimeDelegate(parent[, fmt, usetime=False])
A delegate for datetime values.

18 Chapter 3. Table of contents

http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/datetime.html#datetime
http://docs.python.org/3.2/library/datetime.html#datetime

qte-doc Documentation, Release 0.5.0

Parameters

• fmt – A format string for display as used by datetime.datetime.strftime. If
it is omitted then the system default is used.

• usetime – A boolean specifying whether the time is managed by the delegate. If True,
then the delegate uses datetime.datetime. If false, it uses datetime.date.

getWidget(parent, option, index)
Return a DateEdit, or DateTimeEdit if usetime is True.

class qte.FloatDelegate(parent[, prefix=’‘, decimals=None, suffix=’‘])
A delegate for float values.

Parameters

• prefix – A text prefix to add to numbers displayed, and strip from numbers entered.

• decimals – The number of decimal places to use when displaying the number. If omit-
ted, then all decimals are shown.

• suffix – A text suffic to append to numbers displayed, and strip from numbers entered.

For example:

>>> widget = QWidget()
>>> dg = FloatDelegate(widget, ’$ ’, 1, ’ million’)
>>> dg.displayText(12.345678, None)
’$ 12.3 million’

getWidget(parent, option, index)
Return a FloatEdit with decimals set as in the constructor.

class qte.ListDelegate(parent)
A delegate for option lists.

When using this delegate, the model’s data method is expected to return a SelectList object for
EditRole and a string for DisplayRole.

getWidget(parent, option, index)
Return an OptionsBox.

3.4.5 Views

class qte.DataView([parent])
A customised subclass of QTableView.

The following defaults are set:

•The default delegate is TypedDelegate

•The default row height is reduced to 1.5 times the text height.

•The selection model is set to ContiguousSelection

The following new features have been added:

•A new currentRowChanged signal is emitted from the view when the current row changes. In Qt,
this has to be accessed through the selection model.

•A column widget may be set to the widget of a piece of text. See setColumnWidth for more
information.

•setModel allows communication back to the model through the model’s setView and
unSetView methods. See setModel for more information.

•Application.saveState and Application.restoreState are supported through the
saveState and restoreState methods. Currently, only the column widths are saved.

3.4. Model/View framework 19

http://docs.python.org/3.2/library/datetime.html#datetime.datetime.strftime
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/datetime.html#datetime.datetime
http://docs.python.org/3.2/library/datetime.html#datetime.date
http://docs.python.org/3.2/library/constants.html#True

qte-doc Documentation, Release 0.5.0

•Once a cell has been edited, the current cell moves down a row, mimicking the behaviour of most
spreadsheet programs.

•The view has copy and paste support.

copyRole
The ItemDataRole to be used when copying (default Qt.DisplayRole).

pasteRole
The ItemDataRole to be used when pasting (default Qt.EditRole).

currentRowChanged(oldIndex, newIndex)
Signal emitted whenever the current row changes.

copy()
Copy the selection to the system clipboard.

Data is copied as text in a tab-separated format similar to that used by most spreadsheet programs.

nextCell()
Move to the next cell down if possible.

If the current cell is in the last row, nothing happens.

paste([text])
Paste tabular data into the table, overwriting existing.

The data is written to each cell using model().setData with the role specified in pasteRole.
Note that no data conversion is done and all the data is pasted as strings.

The exact operation of this depends on the selection: If a range of cells is selected, then
pasteToSelection is used. If nothing is selected, pasteAll is used.

If text is not specified, the contents of the clipboard are used.

pasteAll(data)
Paste data to the current index, filling down and right.

data is an iterable of rows, each row being an iterable of columns. As much of the data is pasted as
possible, filling down and right from the current index. Pasting stops either when rows and columns
run out or when the data runs out. The data is pasted one row at a time and a check is made after each
row to determine if there is space for more.

pasteToSelection(data)
Paste data to overwrite the selected indexes.

data is an iterable of rows, each row being an iterable of columns. The data is pasted to fill the selected
range, repeating as necessary. The selection is assumed to be contiguous between the smallest and
largest selected indexes.

restoreState(state)
Restore the object state to state.

saveState()
Return the state of the object to save using Application.saveState.

setColumnWidth(column, width)
Sets the width of the given column to the width specified.

width may be a string, in which case textWidth is used to calculate the width of the text on this
widget.

setModel(model)
Set the model displayed in the view.

When a model is set, its setView method is called if it exists. Similarly, unsetView is called when
the model is removed from the view. These methods allow the model to perform specific action on the
view, e.g. connecting to some of its signals.

20 Chapter 3. Table of contents

qte-doc Documentation, Release 0.5.0

setModels(*models)
Connect a list of proxy models to this view.

This is a convenience function for common cases when a DataModel with a series of proxy models
are used. The models listed should be in hierarchal order, e.g.:

setModels(proxy1, proxy2, datamodel)

is equivalent to:

setModel(proxy1)
proxy1.setSourceModel(proxy2)
proxy2.setSourceModel(datamodel)

The last model should be an actual data model, not a proxy.

3.5 Core Tools

qte.compactSeparators(toolbar)
Remove adjacent separators in a QTooBar instance.

qte.error(prompt)
Use a QMessageBox to display an error message.

qte.fadeBrush(colour[, fraction=0.0])
Return a brush with colour faded by fraction.

fraction should be between 0 and 1, where 0 has no effect on the colour and 1 results in white.

qte.float2(s[, default=0.0])
Convert s to a float, returning default if it cannot be converted.

>>> float2(’33.4’, 42.5)
33.4
>>> float2(’cannot convert this’, 42.5)
42.5
>>> float2(None, 0)
0
>>> print(float2(’default does not have to be a float’, None))
None

qte.getOpenFileName(filters[, title][, path])
Display an “Open File” dialog.

Parameters

• filters – A list of file filters to apply.

• title – The dialog title. The default is ’Open’.

• path – The path at which to open the dialog.

Returns The name of the file, or None if the dialog is canceled.

qte.getOption(prompt, options[, current=0])
Display a dropdown list of options.

Parameters

• prompt – Prompt text to display.

• options – A list of strings.

• current – The initially selected index.

Returns The newly selected index

3.5. Core Tools 21

http://docs.python.org/3.2/library/constants.html#None

qte-doc Documentation, Release 0.5.0

qte.getSaveFileName(filters[, title][, path])
Display a “Save File” dialog.

Parameters

• filters – A list of file filters to apply.

• title – The dialog title. The default is ’Save’.

• path – The path at which to open the dialog.

Returns The name of the file, or None if the dialog is canceled.

qte.getText(prompt[, default=’‘, validate=None, handle_invalid=’confirm’])
Requests a text string through a gui prompt.

Parameters

• prompt – Prompt text to display.

• default – Default value in the entry widget.

• validate – A function which accepts a single argument and returns True or False.

• handle_invalid – Control how an invalid entry is handled.

Returns The value entered, or None if the request was cancelled.

handle_invalid can be any one of the following strings

Value Description
‘confirm’ A confirmation dialog is displayed, asking whether to accept.
‘warn_accept’ A warning dialog is displayed and the value is accepted.
‘warn_deny’ A warning dialog is displayed and the value can be re-entered.
‘cancel’ Nothing is displayed or accepted.

qte.guessWidget(value)
Attempt to guess which widget to provide based on a value.

The return value is a class which implements EditWidgetABC. value is the value the widget should work
with. If no suitable widget is found, TextEdit is returned.

qte.int2(s[, default=0])
Convert s to an int, returning default if it cannot be converted.

>>> int2(’33’, 42)
33
>>> int2(’cannot convert this’, 42)
42
>>> print(int2(’default does not have to be an int’, None))
None

qte.menuToToolBar(menu[, toolbar])→ toolbar:
Add all actions in a QMenu to a QTooBar.

If toolbar is missing a new QToolBar is created, otherwise toolbar is updated. In either case, the toolbar
is returned.

Actions are added in the same order as they were to the QMenu instance. Separators are added to correspond
to those in the menu, and submenus are also added to one level, surrounded by separators. Further submenus
are added as dropdown menus.

qte.message(prompt)
Use a QMessageBox to display an information message.

qte.question(prompt)
Display a question dialog with Yes and No buttons.

The return value is True if Yes was selected or False if No was selected.

22 Chapter 3. Table of contents

http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#False
http://docs.python.org/3.2/library/constants.html#None
http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#False

qte-doc Documentation, Release 0.5.0

qte.runApp(mainWindow, name)
Create a new application and runs it, setting the main window and name.

This also sets the locale to the current system locale.

Example usage is:

from gui import MainWindow

if __name__== ’__main’:
runApp(MainWindow, ’My Application’)

Once the application created has been terminated, runApp calls sys.exit, so this should be the final
command to be run.

mainWindow can be either a QWidget instance or subclass. If it is a subclass, then an instance is created.

This is implemented by calling the following:

locale.setLocal(locale.LC_ALL, ’’)
QXApplication()
win = mainWindow()
QXApplication.setApplicationName(name)
QXApplication.setMainWindow(win)
win.setWindowTitle(name)
win.show()
sys.exit(QXApplication.exec_())

class qte.SafeWriter(name[, text[, backup]])
A context manager which provides a safe environment for writing a file.

SafeWriter attempts to avoid race conditions and ensure that data is not lost if for any reason writing
fails. It works by using the following procedure for writing to a file:

1.A new empty file is created for writing using tempfile.mkstemp.

2.Once the temporary file is closed, the the original is copied to a new, temporary name (or, optionally,
a specified backup).

3.The new file written is renamed to the original file name.

4.If a backup name is not set, the temporary backup is deleted.

This means that there is always a copy of the original file until after the new file is closed and if there is any
failure during the process the files are rolled back to their original status.

For example:

with SafeWriter(’file’) as f:
f.write(b’spam’)

This is all done to avoid race conditionals as far as possible, given the provisions of tempfile.mkstemp
and os.rename. Under normal circumstances, the only possibility of a race condition is that a new file
with the same name as the target could be created after the target is removed and before the temporary file
is renamed. This will only be possible on certain platforms where os.rename does not automatically
overwrite.

There are occasions when access to the temporary file name is preferred to an open file, for example, when
using with sqlite. In this case, open can be set to False to obtain the file name:

with SafeWriter(’file’, open=False) as name:
conn = sqlite3.connect(name)
conn.execute(’CREATE TABLE temp (col)’)
conn.close()

Parameters

• name – The name of final file (not the temporary one)

3.5. Core Tools 23

http://docs.python.org/3.2/library/sys.html#sys.exit
http://docs.python.org/3.2/library/tempfile.html#tempfile.mkstemp
http://docs.python.org/3.2/library/tempfile.html#tempfile.mkstemp
http://docs.python.org/3.2/library/os.html#os.rename
http://docs.python.org/3.2/library/os.html#os.rename

qte-doc Documentation, Release 0.5.0

• text – Indicates whether the tile should be opened in text (True) or binary (False)
mode (default). On some platforms this makes no difference.

• backup – If this is set and the target file already exists, it is copied to backup before it
is overwritten.

• open – If True (default), open the file and return a file object. Otherwise, return the
temporary file name

qte.standardBrush(color_role)
Return a brush for a Qt standard color role.

qte.standardIcon(icon)
Return a standard icon in the application style.

icon may either be a QStyle.StandardPixmap flag (e.g. QStyle.SP_DirIcon) or the name of a
standard pixmap, omitting the ‘SP’ portion (e.g. ’DirIcon’).

qte.textHeight(widget[, text])
Return the height of text painted by widget.

If text is omitted, then the height of a single character is returned.

qte.textWidth(widget[, text])
Return the width of text painted by widget.

If text is omitted, the average character width is returned.

24 Chapter 3. Table of contents

http://docs.python.org/3.2/library/constants.html#True
http://docs.python.org/3.2/library/constants.html#False
http://docs.python.org/3.2/library/constants.html#True

Python Module Index

q
qte, 1

25

	Key features
	Installation
	Table of contents
	Tutorial
	UIs and Resources
	Edit Widgets
	Model/View framework
	Core Tools

	Python Module Index

